
LoRA
research paper explained

SECTIONS
Here are the sections we are going to see about

Abstract

Problem Statement

LoRA Method

Introduction

Problems in Existing Solution

Understanding the Low Rank Updates

ABSTRACT

With increased larger
pretraining of models
full finetuning requires
all params to be tuned
as well which becomes
less feasible. For eg:
GPT3(175 B)

LoRA technique proposed
in this paper freezes
pre-trained weights and
injects a trainable rank
decomposition matrix to
train in reduced params
for downstream tasks

No additional inference
latency unlike
conventional adapters,
higher training
throughput, and
performance on par or
better than a fully
finetuned model are some
of the key features of
LoRA

INTRODUCTION
Challenges Existing: Full finetuning tunes all the parameters of a large
pre-trained model making it inconvenient to train such pre-trained
models

Existing Solutions - Adapters: With only a few parameters needed for new
tasks it is only needed to store and load a small number of task-
specific parameters for each task in addition to the pre-trained model

Problems in Existing Solution: Adapters failed to match the performance
of a fully finetuned model

INTRODUCTION -
KEY INSPIRATION
"Over-parameterized models, in fact,
reside in a low intrinsic dimension" is a
key inspiration for this paper which means
that large models can learn with low
dimensional inputs

INTRODUCTION -
HYPOTHESIS
"Change in weights during model adaptation
also has a low intrinsic rank" which
states that model weight can adapt with
very less linearly independent vectors

Note:
dimension - all rows
rank - linearly independent rows

So for eg: 1000 dimension can be expressed
in terms of 10 linearly independent
rows(rank)

LoRA allows training some dense layers
indirectly by optimizing rank

decomposition matrices of dense layer

INTRODUCTION

INTRODUCTION
Advantages of LoRA

01 Efficiently train multiple
tasks by switching
decomposition matrices

03 Simple linear design
allows merging trainable
weights with frozen
weights which results in
no additional inference
latency

02 Lowers the hardware
barrier by 3 times since
gradient is calculated
only for injected matrices

04 LoRA can be combined with
some other previous adapter
methods like previous
tuning

PROBLEM STATEMENT
Given a pre-trained language model, PΦ(y|x) parameterized by Φ while
finetuning for different tasks in context target pairs Z = {(xi,
yi)}i=1,.., N where xi and yi are a sequence of tokens based on the use
case.

During full finetuning pre-trained weights are updated as follows:

Φ0 + ∆Φ

Here the main drawback is that dimension of finetuning is the same as
pretraining

|∆Φ| = |Φ0|

PROBLEM STATEMENT - SOLN.
Considering a parameter-efficient approach where

∆Φ = ∆Φ(Θ)

In the above equation, Θ represents the smaller set of params with,

|Θ| << |Φ0|

With this smaller set of params, optimization is easy since the
trainable params(|Θ|) can be as small as 0.01 % of |Φ0|

PROBLEMS IN EXISTING SOLN
Adapter Layers Inference Latency:1.

 Though there are different types of adapters like two or one per
block experimented it wasn't possible to bypass the extra compute. Large
NN expects parallelism but adapters expect sequential. In a sequential
computing scenario in GPT, the latency was been able to notice

2. Directly Optimizing the Prompt is Hard:
 Some of the previous adapter techniques focusing on compute aspects
such as prefix tuning where it reserves part of sequence length for
adaptation to reduce compute by seq length for downstream tasks. But
here the performance wasn't as expected

LoRA Method

COMPARISON FULL VS LORA

Pretrained
Weights

𝑊 ∈ ℝ𝑑×k

x

 Weight
 Update

∆W

Full Fine-tuning

Wnew = Wold + ∆W

d

Pretrained
Weights

𝑊 ∈ ℝ𝑑×k

x

𝐵 = 0

𝐴 = 𝒩(0,
𝜎2)

LoRA Fine-tuning

Wnew = Wold + WA.WB

A ∈ ℝ𝑑×r

B ∈ ℝr×k

d

r

If ∆W = d x k is 100 x 500 then params in total = 100 x 500
= 50000

Here with r = 4, ∆W in params in total = 100 x 4 + 4 x 500 = 2400

LoRA METHOD - UPDATION METRICS
As per the hypothesis, we can represent the weight matrix as follows

𝑊0 ∈ ℝ𝑑×k

The weight updation can be done as follows,

Wnew = Wold + ∆W

Here from the architecture diagram of LoRA, we can see that ∆W = WA.WB where,

A ∈ ℝ𝑑×r, B ∈ ℝr×k, r -> intrinsic rank

During finetuning W0 is frozen so no gradient updation on the params of the pre-
trained model. Only the decomposition matrices A and B contain trainable
parameters that update.

LoRA METHOD - UPDATION METRICS
A forward pass for h = W0x can be written as follows

h0 = W0x + BAx

Initially, ∆W = 0, where there is weight initialization for A and B as follows

A -> Gaussian Initialization(𝐴 = 𝒩(0, 𝜎 2)), B -> Zero(𝐵 = 0)

Then we scale the weight updation ∆Wx = BAx by

α/r, where α -> lora alpha is a constant in r

While optimizing with Adam it is almost similar to the learning rate(LR). Unlike
previous adapter models which converge to an MLP and can't take long sequences here,
LoRA converges to the original training model.

LoRA METHOD ON TRANSFORMER

Initially, the study is limited to adapting only attention weights for the
downstream tasks freezing MLP modules for parameter efficiency and simplicity

Usually Wq and Wv are considered as target modules for adaptation

Wq(Wk, Wv) is treated as a single matrix

PRACTICAL
BENEFITS OF LORA

1.2TB -> 350GB since we don't store the
optimizer state for frozen params
With the above specified hyperparams, the
model was reduced from 350GB -> 35 MB.
Hence the adapter module size was only 35
MB

Memory Reduction and Storage Usage: This is
the most significant usage of LoRA where it
reduced the memory consumption drastically.
For eg: With r=4, target_modules =
["query_value"] the checkpoint of GPT3 was 35
MB which is 10000x lesser than the original
one. The conversion came in the following way:

Task Switching: Another key benefit in
practice of LoRA is that it is possible to
swap the lora modules for specific downstream
task

(i) Which
matrices should
we apply to?
Referring the table it is very clear that we
can achieve very competitive
performances by just focusing on Wq, Wv
=> Matrices to be applied are Wq, Wv

UNDERSTANDING THE LOW-RANK UPDATES

(ii) What is the
optimal rank
for lora?
From the table of comparison, we can
conclude that we can use 4 or 8.
=> r = 4 or 8 based in params budget

UNDERSTANDING THE LOW-RANK UPDATES

(iii) How much
does W and ∆W
correlate?
From the table, we can infer the following,
(a) Random << ∆Wq by correlation which shows that the ∆Wq amplifies some features in W
(b) Amplification factor: 21.5 ≈ 6.91/0.32 r = 4 has a huge amplification factor with r = 64 smaller
Thus we can conclude that W and ∆W correlate and amplifies the important features for the
downstream tasks

UNDERSTANDING THE LOW-RANK UPDATES

CONCLUSIONS

LoRA is an memory and computation
efficient strategy which achieves
comparable or better performance
than a fully finetuned model

Swappable modules, No additional
inference latencies are some key
features of LoRA

